This report and associated map provide information about important sites for biodiversity conservation in your area.

This information is intended for conservation planning, and is not intended for use in state regulations.
Table of Contents

Introduction

What is BioMap2 – Purpose and applications

One plan, two components

Understanding Core Habitat and its components

Understanding Critical Natural Landscape and its components

Understanding Core Habitat and Critical Natural Landscape Summaries

Sources of Additional Information

Sturbridge Overview

Core Habitat and Critical Natural Landscape Summaries

Elements of BioMap2 Cores

Core Habitat Summaries

Elements of BioMap2 Critical Natural Landscapes

Critical Natural Landscape Summaries
Introduction

The Massachusetts Department of Fish & Game, through the Division of Fisheries and Wildlife’s Natural Heritage & Endangered Species Program (NHESP), and The Nature Conservancy’s Massachusetts Program developed BioMap2 to protect the state’s biodiversity in the context of climate change.

BioMap2 combines NHESP’s 30 years of rigorously documented rare species and natural community data with spatial data identifying wildlife species and habitats that were the focus of the Division of Fisheries and Wildlife’s 2005 State Wildlife Action Plan (SWAP). BioMap2 also integrates The Nature Conservancy’s assessment of large, well-connected, and intact ecosystems and landscapes across the Commonwealth, incorporating concepts of ecosystem resilience to address anticipated climate change impacts.

Protection and stewardship of BioMap2 Core Habitat and Critical Natural Landscape is essential to safeguard the diversity of species and their habitats, intact ecosystems, and resilient natural landscapes across Massachusetts.

What Does Status Mean?

The Division of Fisheries and Wildlife determines a status category for each rare species listed under the Massachusetts Endangered Species Act (MESA), M.G.L. c.131A, and its implementing regulations 321 CMR 10.00. Rare species are categorized as Endangered, Threatened or of Special Concern according to the following:

- **Endangered** species are in danger of extinction throughout all or a significant portion of their range or are in danger of extirpation from Massachusetts.

- **Threatened** species are likely to become Endangered in Massachusetts in the foreseeable future throughout all or a significant portion of their range.

- **Special Concern** species have suffered a decline that could threaten the species if allowed to continue unchecked or occur in such small numbers or with such restricted distribution or specialized habitat requirements that they could easily become Threatened in Massachusetts.

In addition NHESP maintains an unofficial watch list of plants that are tracked due to potential conservation interest or concern, but are not regulated under the Massachusetts Endangered Species Act or other laws or regulations. Likewise, described natural communities are not regulated by any law or regulations, but they can help to identify...
BioMap2: One Plan, Two Components

BioMap2 identifies two complementary spatial layers, Core Habitat and Critical Natural Landscape.

Components of Core Habitat

Core Habitat identifies specific areas necessary to promote the long-term persistence of rare species, other Species of Conservation Concern, exemplary natural communities, and intact ecosystems.

Rare Species

There are 432 native plant and animal species listed as Endangered, Threatened or Special Concern under the Massachusetts Endangered Species Act (MESA) based on their rarity, population trends, and threats to survival. For
Table 1. Species of Conservation Concern described in the State Wildlife Action Plan and/or included on the MESA List and for which habitat was mapped in BioMap2. Note that plants are not included in SWAP, and that marine species such as whales and sea turtles are not included in BioMap2.

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>MESA-listed Species</th>
<th>Non-listed Species of Conservation Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Birds</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>Reptiles</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Amphibians</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Fish</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>102</td>
<td>9</td>
</tr>
<tr>
<td>Plants</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>413</td>
<td>62</td>
</tr>
</tbody>
</table>

BioMap2, NHESP staff identified the highest quality habitat sites for each non-marine species based on size, condition, and landscape context.

Other Species of Conservation Concern

In addition to species on the MESA List described previously, the State Wildlife Action Plan (SWAP) identifies 257 wildlife species and 22 natural habitats most in need of conservation within the Commonwealth. BioMap2 includes species-specific habitat areas for 45 of these species and habitat for 17 additional species which was mapped with other coarse-filter and fine-filter approaches.

Priority Natural Communities

Natural communities are assemblages of plant and animal species that share a common environment and occur together repeatedly on the landscape. BioMap2 gives conservation priority to natural communities with limited distribution and to the best examples of more common types.

Vernal Pools

Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. BioMap2 identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.

Forest Cores

In BioMap2, Core Habitat includes the best examples of large, intact forests that are least impacted by roads and development, providing critical habitat for numerous woodland species. For example, the interior forest habitat defined by Forest Cores supports many bird species sensitive to the impacts of roads and development, such as the Black-throated Green Warbler, and helps maintain ecological processes found only in unfragmented forest patches.

Wetland Cores

BioMap2 used an assessment of Ecological Integrity to identify the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Aquatic Cores

To delineate integrated and functional ecosystems for fish species and other aquatic
Species of Conservation Concern, beyond the species and exemplary habitats described above, BioMap2 identifies intact river corridors within which important physical and ecological processes of the river or stream occur.

Components of Critical Natural Landscape

Critical Natural Landscape identifies intact landscapes in Massachusetts that are better able to support ecological processes and disturbance regimes, and a wide array of species and habitats over long time frames.

Landscape Blocks

BioMap2 identifies the most intact large areas of predominately natural vegetation, consisting of contiguous forests, wetlands, rivers, lakes, and ponds, as well as coastal habitats such as barrier beaches and salt marshes.

Upland Buffers of Wetland and Aquatic Cores

A variety of analyses were used to identify protective upland buffers around wetlands and rivers.

Upland Habitat to Support Coastal Adaptation

BioMap2 identifies undeveloped lands adjacent to and up to one and a half meters above existing salt marshes as Critical Natural Landscapes with high potential to support inland migration of salt marsh and other coastal habitats over the coming century.

The conservation areas identified by BioMap2 are based on breadth and depth of data, scientific expertise, and understanding of Massachusetts’ biodiversity. The numerous sources of information and analyses used to create Core Habitat and Critical Natural Landscape are complementary, and outline a comprehensive conservation vision for Massachusetts, from rare species to intact landscapes. In total, these robust analyses define a suite of priority lands and waters that, if permanently protected, will support Massachusetts’ natural systems for generations to come.

Legal Protection of Biodiversity

BioMap2 presents a powerful vision of what Massachusetts would look like with full protection of the land most important for supporting the Commonwealth’s biodiversity. While BioMap2 is a planning tool with no regulatory function, all state-listed species enjoy legal protection under the Massachusetts Endangered Species Act (M.G.L. c.131A) and its implementing regulations (321 CMR 10.00). Wetland habitat of state-listed wildlife is also protected under the Wetlands Protection Act Regulations (310 CMR 10.00). The Natural Heritage Atlas contains maps of Priority Habitats and Estimated Habitats, which are used, respectively, for regulation under the Massachusetts Endangered Species Act and the Wetlands Protection Act. For more information on rare species regulations, and to view Priority and Estimated Habitat maps, please see the Regulatory Review page at http://www.mass.gov/eea/agencies/dfg/dfw/natural-heritage/regulatory-review.

BioMap2 is a conservation planning tool that does not, in any way, supplant the Estimated and Priority Habitat Maps which have regulatory significance. Unless and until the BioMap2 vision is fully realized, we must continue to protect our most imperiled species and their habitats.
Understanding Core Habitat Summaries

Following the Town Overview, there is a descriptive summary of each Core Habitat and Critical Natural Landscape that occurs in your city or town. These summaries highlight some of the outstanding characteristics of each Core Habitat and Critical Natural Landscape, and will help you learn more about your city or town’s biodiversity. You can find out more information about many of these species and natural communities by looking at specific fact sheets at www.mass.gov/nhesp.

Additional Information

For copies of the full BioMap2 report, the Technical Report, and an interactive mapping tool, visit the BioMap2 website via the Land Protection and Planning tab at www.mass.gov/nhesp. If you have any questions about this report, or if you need help protecting land for biodiversity in your community, the Natural Heritage & Endangered Species Program staff looks forward to working with you.

Contact the Natural Heritage & Endangered Species Program

By phone 508-389-6360
By fax 508-389-7890
By email natural.heritage@state.ma.us
By Mail 100 Hartwell Street, Suite 230
 West Boylston, MA 01583

The GIS datalayers of BioMap2 are available for download from MassGIS at www.mass.gov/mgis.
Town Overview

Sturbridge lies on the border of the Lower Worcester Plateau and the Southern New England Coastal Plains and Hills Ecoregions. The Lower Worcester Plateau Ecoregion is comprised of open hills and transition hardwood and central hardwood forests. Most parts drain to the Chicopee and Quinebaug Rivers. The Southern New England Coastal Plains and Hills Ecoregion is comprised of plains with a few low hills. Forests are mainly central hardwoods with some transition hardwoods and some elm-ash-red maple and red and white pine. Many major rivers drain this area.

BioMap2 Components

Core Habitat
- 6 Exemplary or Priority Natural Community Cores
- 1 Forest Core
- 7 Wetland Cores
- 1 Aquatic Core
- 14 Species of Conservation Concern Cores**
 - 1 mammal, 2 reptiles, 2 amphibians, 1 fish, 2 mussels, 5 plants

Critical Natural Landscape
- 3 Landscape Blocks
- 8 Wetland Core Buffers
- 8 Aquatic Core Buffers

* Calculated using MassGIS data layer “Protected and Recreational Open Space—March, 2012”.

** See next page for complete list of species, natural communities and other biodiversity elements.
BioMap2 Core Habitat and Critical Natural Landscape in Sturbridge

![Map of BioMap2 Core Habitat and Critical Natural Landscape in Sturbridge](image_url)

- **BioMap2 Core Habitat**
- **BioMap2 Critical Natural Landscape**

1 Mile

For more information on rare species and natural communities, please see our fact sheets online at www.mass.gov/nhesp.
Species of Conservation Concern, Priority and Exemplary Natural Communities, and Other Elements of Biodiversity in Sturbridge

Mussels
- Creeper, (*Strophitus undulatus*), SC
- Triangle Floater, (*Alasmidonta undulata*), Non-listed SWAP

Amphibians
- Marbled Salamander, (*Ambystoma opacum*), T
- Four-toed Salamander, (*Hemidactylium scutatum*), Non-listed SWAP

Fishes
- Bridle Shiner, (*Notropis bifrenatus*), SC

Reptiles
- Eastern Ribbon Snake, (*Thamnophis sauritus*), Non-listed SWAP
- Spotted Turtle, (*Clemmys guttata*), Non-listed SWAP

Mammals
- Water Shrew, (*Sorex palustris*), SC

Plants
- Climbing Fumitory, (*Adlumia fungosa*), SC
- Slender Cottongrass, (*Eriophorum gracile*), T
- Dwarf Bulrush, (*Lipocarpha micrantha*), T
- Drooping Speargrass, (*Poa saltuensis ssp. languida*), E
- Bristly Buttercup, (*Ranunculus pensylvanicus*), SC

Priority Natural Communities
- Inland Atlantic White Cedar Swamp, S2
- Circumneutral Talus Forest/Woodland, S3

Exemplary Natural Communities
- Hemlock-Hardwood Swamp
- Shallow Emergent Marsh
- Shrub Swamp

Other BioMap2 Components
- Forest Core
- Aquatic Core
- Wetland Core
- Landscape Block
- Aquatic Core Buffer
- Wetland Core Buffer

For more information on rare species and natural communities, please see our fact sheets online at www.mass.gov/nhesp.
E = Endangered
T = Threatened
SC = Special Concern
S1 = Critically Imperiled communities, typically 5 or fewer documented sites or very few remaining acres in the state.
S2 = Imperiled communities, typically 6-20 sites or few remaining acres in the state.
S3 = Vulnerable communities, typically have 21-100 sites or limited acreage across the state.

For more information on rare species and natural communities, please see our fact sheets online at www.mass.gov/nhesp.
BioMap2 Core Habitat in Sturbridge

Core IDs correspond with the following element lists and summaries.
Elements of BioMap2 Cores

This section lists all elements of BioMap2 Cores that fall \textit{entirely or partially} within Sturbridge. The elements listed here may not occur within the bounds of Sturbridge.

Core 905
Wetland Core

Core 984
Priority & Exemplary Natural Communities
Shrub Swamp

Core 993
Forest Core
Wetland Core
Aquatic Core
Species of Conservation Concern
 Climbing Fumitory \quad \textit{Adlumia fungosa} \quad SC
 Triangle Floater \quad \textit{Alasmidonta undulata} \quad Non-listed SWAP

Core 1017
Aquatic Core

Core 1132
Aquatic Core
Species of Conservation Concern
 Bristly Buttercup \quad \textit{Ranunculus pensylvanicus} \quad SC

Core 1147
Aquatic Core
Priority & Exemplary Natural Communities
 Inland Atlantic White Cedar Swamp \quad S2
Species of Conservation Concern
 Creeper \quad \textit{Strophitus undulatus} \quad SC
 Triangle Floater \quad \textit{Alasmidonta undulata} \quad Non-listed SWAP
 Spotted Turtle \quad \textit{Clemmys guttata} \quad Non-listed SWAP

Core 1172
Wetland Core
Core 1200

Aquatic Core

Species of Conservation Concern

- **Bristly Buttercup**: *Ranunculus pensylvanicus*
 Status: SC
- **Four-toed Salamander**: *Hemidactylium scutatum*
 Status: Non-listed SWAP
- **Marbled Salamander**: *Ambystoma opacum*
 Status: T

Core 1202

Aquatic Core

Core 1213

Wetland Core

Aquatic Core

Species of Conservation Concern

- **Bridle Shiner**: *Notropis bifrenatus*
 Status: SC

Core 1253

Wetland Core

Core 1254

Species of Conservation Concern

- **Water Shrew**: *Sorex palustris*
 Status: SC

Core 1271

Species of Conservation Concern

- **Four-toed Salamander**: *Hemidactylium scutatum*
 Status: Non-listed SWAP

Core 1293

Wetland Core

Aquatic Core

Priority & Exemplary Natural Communities

- **Circumneutral Talus Forest/Woodland**: S3

Species of Conservation Concern

- **Climbing Fumitory**: *Adlumia fungosa*
 Status: SC
- **Drooping Speargrass**: *Poa saltuensis ssp. languida*
 Status: E
- **Slender Cottongrass**: *Eriophorum gracile*
 Status: T

Core 1307

Species of Conservation Concern

- **Marbled Salamander**: *Ambystoma opacum*
 Status: T
Core 1327

Wetland Core
Vernal Pool Core
Priority & Exemplary Natural Communities
- Hemlock-Hardwood Swamp
- Shallow Emergent Marsh

Species of Conservation Concern

<table>
<thead>
<tr>
<th>Species</th>
<th>Scientific Name</th>
<th>Conservation Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drooping Speargrass</td>
<td>Poa saltuensis ssp. languida</td>
<td>E</td>
</tr>
<tr>
<td>Four-toed Salamander</td>
<td>Hemidactylum scutatum</td>
<td>Non-listed SWAP</td>
</tr>
<tr>
<td>Marbled Salamander</td>
<td>Ambystoma opacum</td>
<td>T</td>
</tr>
<tr>
<td>Eastern Ribbon Snake</td>
<td>Thamnophis sauritus</td>
<td>Non-listed SWAP</td>
</tr>
<tr>
<td>Northern Black Racer</td>
<td>Coluber constrictor</td>
<td>Non-listed SWAP</td>
</tr>
</tbody>
</table>

Core 1595

Wetland Core
Aquatic Core
Priority & Exemplary Natural Communities
- Acidic Graminoid Fen S3
- Acidic Shrub Fen S3
- Circumneutral Talus Forest/Woodland S3
- Deep Emergent Marsh
- Shrub Swamp

Species of Conservation Concern

<table>
<thead>
<tr>
<th>Species</th>
<th>Scientific Name</th>
<th>Conservation Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dwarf Bulrush</td>
<td>Lipocarpha micrantha</td>
<td>T</td>
</tr>
<tr>
<td>Long’s Bulrush</td>
<td>Scirpus longii</td>
<td>T</td>
</tr>
<tr>
<td>Variable Sedge</td>
<td>Carex polymorpha</td>
<td>E</td>
</tr>
<tr>
<td>Vasey’s Pondweed</td>
<td>Potamogeton vaseyi</td>
<td>E</td>
</tr>
<tr>
<td>Triangle Floater</td>
<td>Alasmidonta undulata</td>
<td>Non-listed SWAP</td>
</tr>
<tr>
<td>Blue-spotted Salamander</td>
<td>Ambystoma laterale</td>
<td>SC</td>
</tr>
<tr>
<td>Four-toed Salamander</td>
<td>Hemidactylum scutatum</td>
<td>Non-listed SWAP</td>
</tr>
<tr>
<td>Eastern Hognose Snake</td>
<td>Heterodon platirhinos</td>
<td>Non-listed SWAP</td>
</tr>
<tr>
<td>Northern Black Racer</td>
<td>Coluber constrictor</td>
<td>Non-listed SWAP</td>
</tr>
<tr>
<td>Spotted Turtle</td>
<td>Clemmys guttata</td>
<td>Non-listed SWAP</td>
</tr>
<tr>
<td>Wood Turtle</td>
<td>Glyptemys insculpta</td>
<td>SC</td>
</tr>
<tr>
<td>Bridle Shiner</td>
<td>Notropis bifrenatus</td>
<td>SC</td>
</tr>
<tr>
<td>American Bittern</td>
<td>Botaurus lentiginosus</td>
<td>E</td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Haliaeetus leucocephalus</td>
<td>T</td>
</tr>
<tr>
<td>King Rail</td>
<td>Rallus elegans</td>
<td>T</td>
</tr>
<tr>
<td>Least Bitter</td>
<td>Ixobrychus exilis</td>
<td>E</td>
</tr>
<tr>
<td>Pied-billed Grebe</td>
<td>Podilymbus podiceps</td>
<td>E</td>
</tr>
<tr>
<td>Sedge Wren</td>
<td>Cistothorus platensis</td>
<td>E</td>
</tr>
<tr>
<td>Sora</td>
<td>Porzana carolina</td>
<td>Non-listed SWAP</td>
</tr>
</tbody>
</table>
Core Habitat Summaries

Core 905
A 32-acre Core Habitat featuring Wetland Core.

Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Core 984
A 23-acre Core Habitat featuring a Priority Natural Community.

Shrub Swamp communities are a common and variable type of wetlands occurring on seasonally or temporarily flooded soils. They are often found in the transition zone between emergent marshes and swamp forests. This example of Shrub Swamp is relatively large and pristine, with good habitat and species diversity and no exotic invasive species.

Core 993
A 6,050-acre Core Habitat featuring Forest Core, Wetland Core, Aquatic Core, and Species of Conservation Concern.

Forest Cores are the best examples of large, intact forests that are least impacted by roads and development. Forest Cores support many bird species sensitive to the impacts of roads and development and help maintain ecological processes found only in unfragmented forest patches.

Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.

Climbing Fumitory is an herbaceous biennial vine that can reach lengths of 10 feet. It is usually found in the shade climbing over talus at the base of cliffs.

Triangle Floaters are freshwater mussels commonly found in low-gradient river reaches with sand and gravel substrates and low to moderate water velocities, although they are found in a wide range of substrate and flow conditions.
Core 1017

A <1-acre Core Habitat featuring Aquatic Core.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.

Core 1132

A 28-acre Core Habitat featuring Aquatic Core and a Species of Conservation Concern.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.

Bristly Buttercup is an annual or short-lived perennial herb with small, pale yellow flowers. A habitat generalist, Bristly Buttercup grows in a variety of areas that tend to have open to filtered light and that are wet to periodically flooded. It often inhabits areas with some disturbance.

Core 1147

A 610-acre Core Habitat featuring Aquatic Core, Priority Natural Communities, and Species of Conservation Concern.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.

Inland Atlantic White Cedar Swamps are forested wetlands dominated by Atlantic white cedar, with hemlock, spruce, red maple, and yellow birch. As in all Atlantic White Cedar swamps, water-saturated peat overlies the mineral sediments. This small example of an Inland Atlantic White Cedar Swamp has good floristic diversity, although it is not well buffered in the landscape.

Creepers are freshwater mussels that inhabit low-gradient reaches of small to large rivers with sand or gravel substrates. Cool to warm water with diverse fish assemblages best support Creepers.

Triangle Floaters are freshwater mussels commonly found in low-gradient river reaches with sand and gravel substrates and low to moderate water velocities, although they are found in a wide range of substrate and flow conditions.

Strong populations of Spotted Turtles in good habitat - large, unfragmented, protected open space - continue to be of interest for the conservation of this species. This small, dark-colored turtle with yellow spots on its carapace inhabits a variety of wetlands year-round and nests in nearby uplands during spring. Road and collection are the primary conservation concerns.
Core 1172

A 34-acre Core Habitat featuring Wetland Core.

Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Core 1200

A 371-acre Core Habitat featuring Aquatic Core and Species of Conservation Concern.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.

Bristly Buttercup is an annual or short-lived perennial herb with small, pale yellow flowers. A habitat generalist, Bristly Buttercup grows in a variety of areas that tend to have open to filtered light and that are wet to periodically flooded. It often inhabits areas with some disturbance.

Four-toed Salamanders live in forested habitats surrounding swamps, bogs, marshes, vernal pools, and other fish-free waters that are used as breeding sites. Most breeding sites in Massachusetts are characterized by pit-and-mound topography with significant sphagnum-moss cover. Eggs are typically laid in mounds or patches of sphagnum moss that overhang water. Upon hatching, the larvae wriggle through the moss and drop into the water, where they will develop for several weeks prior to metamorphosis.

Adult and juvenile Marbled Salamanders inhabit upland forests during most of the year, where they reside in small-mammal burrows and other subsurface retreats. Adults migrate during late summer or early fall to breed in dried portions of vernal pools, swamps, marshes, and other predominantly fish-free wetlands. Eggs are deposited under logs, leaf-litter, or grass tussocks and hatch after being inundated by fall rains. Larvae metamorphose during late spring, whereupon they disperse into upland forest.

Core 1202

A 125-acre Core Habitat featuring Aquatic Core.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.

Core 1213

A 433-acre Core Habitat featuring Wetland Core, Aquatic Core, and a Species of Conservation Concern.
Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

The 497-acre Wetland Core is the 2nd largest in this ecoregion and among the largest 20% of Wetland Cores statewide.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.

Bridle Shiners are small (<5 cm) minnows that are found in clear water in slack areas of streams and rivers and are also found in lakes and ponds.

Core 1253

An 87-acre Core Habitat featuring Wetland Core.

The 87-acre Wetland Core here is among the largest 20% of Wetland Cores in this ecoregion.

Core 1254

A 37-acre Core Habitat featuring a Species of Conservation Concern.

The Water Shrew habitat is near water - most commonly the banks of a swift rocky-bedded stream in a dense conifer or mixed forest.

Core 1271

A 39-acre Core Habitat featuring a Species of Conservation Concern.

Four-toed Salamanders live in forested habitats surrounding swamps, bogs, marshes, vernal pools, and other fish-free waters that are used as breeding sites. Most breeding sites in Massachusetts are characterized by pit-and-mound topography with significant sphagnum-moss cover. Eggs are typically laid in mounds or patches of sphagnum moss that overhang water. Upon hatching, the larvae wriggle through the moss and drop into the water, where they will develop for several weeks prior to metamorphosis.
Core 1293

A 2,583-acre Core Habitat featuring Wetland Core, Aquatic Core, Priority Natural Communities, and Species of Conservation Concern.

Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.

Circumneutral Talus Forest communities develop on boulder-strewn slopes below slightly acidic cliffs or rock outcrops. There is often a gradient of vegetation density as the slope changes, with more trees on the lower slope.

Two examples of Circumneutral Talus Forest here include one that is small, and has relatively low species diversity. However, it is located within a large roadless area and is free of exotic species and human disturbance.

Climbing Fumitory is an herbaceous biennial vine that can reach lengths of 10 feet. It is usually found in the shade climbing over talus at the base of cliffs.

Drooping Speargrass is a slender, graceful, perennial grass of rich, rocky woodlands and openings. It inhabits dry, rocky, fertile soils derived from base-rich bedrock such as basalt, marble, or limestone. It typically occurs on slopes and ridge crests within deciduous forests and woodlands.

Slender Cottongrass is a plant of swamps and peatlands. Habitats in Massachusetts include acidic and calcareous fens and portions of seepage swamps.

Core 1307

A 189-acre Core Habitat featuring a Species of Conservation Concern.

Adult and juvenile Marbled Salamanders inhabit upland forests during most of the year, where they reside in small-mammal burrows and other subsurface retreats. Adults migrate during late summer or early fall to breed in dried portions of vernal pools, swamps, marshes, and other predominantly fish-free wetlands. Eggs are deposited under logs, leaf-litter, or grass tussocks and hatch after being inundated by fall rains. Larvae metamorphose during late spring, whereupon they disperse into upland forest.

Core 1327

A 724-acre Core Habitat featuring Wetland Core, Vernal Pool Core, Priority Natural Communities, and Species of Conservation Concern.

For more information on rare species and natural communities, please see our fact sheets online at www.mass.gov/nhesp.
Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. BioMap2 identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.

Hemlock-Hardwood Swamps are acidic forested swamps that have hemlock as the dominant canopy species. These forested wetlands occur on saturated soils in poorly drained basins throughout the state. This example of Hemlock-Hardwood Swamp is embedded within an extensive, maturing Oak-Hemlock-White Pine Forest, which itself has excellent habitat diversity, including drainages, small ravines, and vernal pools.

The Shallow Emergent Marsh community is a graminoid wetland found in broad, flat areas bordering rivers or along pond margins. They commonly occur in abandoned beaver ponds, and differ from Deep Emergent Marshes in having less standing water. This moderate-sized example of Shallow Emergent Marsh is in good condition and is fairly well buffered within a naturally vegetated area.

Drooping Speargrass is a slender, graceful, perennial grass of rich, rocky woodlands and openings. It inhabits dry, rocky, fertile soils derived from base-rich bedrock such as basalt, marble, or limestone. It typically occurs on slopes and ridge crests within deciduous forests and woodlands.

Four-toed Salamanders live in forested habitats surrounding swamps, bogs, marshes, vernal pools, and other fish-free waters that are used as breeding sites. Most breeding sites in Massachusetts are characterized by pit-and-mound topography with significant sphagnum-moss cover. Eggs are typically laid in mounds or patches of sphagnum moss that overhang water. Upon hatching, the larvae wriggle through the moss and drop into the water, where they will develop for several weeks prior to metamorphosis.

Adult and juvenile Marbled Salamanders inhabit upland forests during most of the year, where they reside in small-mammal burrows and other subsurface retreats. Adults migrate during late summer or early fall to breed in dried portions of vernal pools, swamps, marshes, and other predominantly fish-free wetlands. Eggs are deposited under logs, leaf-litter, or grass tussocks and hatch after being inundated by fall rains. Larvae metamorphose during late spring, whereupon they disperse into upland forest.

Eastern Ribbon Snakes are a medium-sized, very thin snake ranging from 7 to 34 inches long at maturity. They are active during the day and live in wetlands and edges of open water being comfortable in water and on land, eating amphibians, insects, and occasional fish. This species hibernates in ant mounds, rodent burrows, crayfish burrows, and bank burrows.
The Northern Black Racer is a snake of young upland forests, shrublands such as pitch pine/scrub oak communities and rock cliffs. Although relatively common, its range appears to be constricting and its abundance has been declining.

Core 1595

A 4,335-acre Core Habitat featuring Wetland Core, Aquatic Core, Priority Natural Communities, and Species of Conservation Concern.

In southwestern Worcester County, the Quaboag River and its tributaries, the Sevenmile River, the Brookfield River, and Coys Brook, wind slowly through four miles of peatlands and marshes, as well as two lakes, Quaboag Pond and Quacumquisit Pond. This watery landscape supports one of southern New England’s largest and most stable populations of the Endangered American Bittern, as well as nesting Sedge Wrens, Least Bitterns, Pied-billed Grebes, and King Rails in smaller numbers. The marshes are also home to one of the world’s largest populations of the globally rare Long’s Bulrush.

Acidic Graminoid Fens are sedge- and sphagnum-dominated acidic peatlands that experience some groundwater and/or surface water flow but no calcareous seepage. Standing water is often present throughout much of the growing season. This extraordinarily large and pristine example of Acidic Graminoid Fen is sedge dominated with scattered shrubs. It is within a 1117 acre roadless block and invasive species are not present and it has an intact hydrological system.

Acidic Shrub Fens are shrub-dominated acidic peatlands found primarily along pond margins in the eastern and central part of the state. These wetland communities experience some groundwater and/or surface water inputs, but no calcareous seepage. This is a large and pristine example of Acidic Shrub Fen that is part of a larger mosaic of acidic wetland ecosystems. Despite the presence of some exotic invasive species, it is in very good condition.

Circumneutral Talus Forest communities develop on boulder strewn slopes below slightly acidic cliffs or rock outcrops. There is often a gradient of vegetation density as the slope changes, with more trees on the lower slope. This example of Circumneutral Talus Forest, though small, is in excellent condition, with good species diversity. It occurs adjacent to several other interesting natural communities, including a Circumneutral Cliff and a cold swamp.

Deep Emergent Marshes are graminoid wetlands occurring on saturated soils that are seasonally flooded. They generally form in broad, flat areas bordering slow rivers or along pond margins, and often grade into shrub swamps. This Core has two examples of Deep Emergent Marsh incouding one that is of exemplary species diversity, size, and quality, and is home to both state-listed rare plants and animals.

Shrub Swamp communities are a common and variable type of wetlands occurring on seasonally or temporarily flooded soils. They are often found in the transition zone between emergent marshes and swamp forests. This example of Shrub Swamp is in excellent condition, and is an unusual and large variant enriched by groundwater seepage and dominated by Canadian Burnet.
Wetlands Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.
BioMap2 Critical Natural Landscape in Sturbridge

Critical Natural Landscape IDs correspond with the following element lists and summaries.
Elements of BioMap2 Critical Natural Landscapes

This section lists all elements of BioMap2 Critical Natural Landscapes that fall *entirely or partially* within Sturbridge. The elements listed here may not occur within the bounds of Sturbridge.

<table>
<thead>
<tr>
<th>CNL 500</th>
<th>Wetland Core Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNL 518</td>
<td>Aquatic Core Buffer</td>
</tr>
<tr>
<td></td>
<td>Landscape Block</td>
</tr>
<tr>
<td></td>
<td>Wetland Core Buffer</td>
</tr>
<tr>
<td>CNL 529</td>
<td>Wetland Core Buffer</td>
</tr>
<tr>
<td>CNL 570</td>
<td>Aquatic Core Buffer</td>
</tr>
<tr>
<td>CNL 572</td>
<td>Wetland Core Buffer</td>
</tr>
<tr>
<td>CNL 577</td>
<td>Aquatic Core Buffer</td>
</tr>
<tr>
<td>CNL 595</td>
<td>Aquatic Core Buffer</td>
</tr>
<tr>
<td>CNL 596</td>
<td>Wetland Core Buffer</td>
</tr>
<tr>
<td>CNL 601</td>
<td>Aquatic Core Buffer</td>
</tr>
<tr>
<td>CNL 611</td>
<td>Aquatic Core Buffer</td>
</tr>
<tr>
<td>CNL 616</td>
<td>Aquatic Core Buffer</td>
</tr>
<tr>
<td></td>
<td>Wetland Core Buffer</td>
</tr>
<tr>
<td>CNL 627</td>
<td>Wetland Core Buffer</td>
</tr>
<tr>
<td>CNL 640</td>
<td>Aquatic Core Buffer</td>
</tr>
<tr>
<td>CNL 686</td>
<td>Landscape Block</td>
</tr>
<tr>
<td></td>
<td>Wetland Core Buffer</td>
</tr>
</tbody>
</table>
CNL 764

Aquatic Core Buffer
Landscape Block
Wetland Core Buffer

For more information on rare species and natural communities, please see our fact sheets online at www.mass.gov/nhesp.
Critical Natural Landscape Summaries

CNL 500

A 97-acre Critical Natural Landscape featuring Wetland Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 518

A 3,245-acre Critical Natural Landscape featuring Aquatic Core Buffer, Wetland Core Buffer and Landscape Block.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

Landscape Blocks, the primary component of Critical Natural Landscapes, are large areas of intact predominately natural vegetation, consisting of contiguous forests, wetlands, rivers, lakes, and ponds, as well as coastal habitats such as barrier beaches and salt marshes. Pastures and power-line rights-of-way, which are less intensively altered than most developed areas, were also included since they provide habitat and connectivity for many species. Collectively, these natural cover types total 3.6 million acres across the state. An Ecological Integrity assessment was used to identify the most intact and least fragmented areas. These large Landscape Blocks are most likely to maintain dynamic ecological processes such as buffering, connectivity, natural disturbance, and hydrological regimes, all of which help to support wide-ranging wildlife species and many other elements of biodiversity.

In order to identify critical Landscape Blocks in each ecoregion, different Ecological Integrity thresholds were used to select the largest intact landscape patches in each ecoregion while avoiding altered habitat as much as possible. This ecoregional representation accomplishes a key goal of BioMap2 to protect the ecological stages that support a broad suite of biodiversity in the context of climate change. Blocks were defined by major roads, and minimum size thresholds differed among ecoregions to ensure that BioMap2 includes the best of the best in each ecoregion.

CNL 529

A 77-acre Critical Natural Landscape featuring Wetland Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river,
by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 570

An 812-acre Critical Natural Landscape featuring Aquatic Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 572

A 17-acre Critical Natural Landscape featuring Wetland Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 577

A 44-acre Critical Natural Landscape featuring Aquatic Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 595

A 45-acre Critical Natural Landscape featuring Aquatic Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.
A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 601
A 4-acre Critical Natural Landscape featuring Aquatic Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 616
A 1,871-acre Critical Natural Landscape featuring Aquatic Core Buffer and Wetland Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.
wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 640

A 16-acre Critical Natural Landscape featuring Aquatic Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 686

A 1,210-acre Critical Natural Landscape featuring Wetland Core Buffer and Landscape Block.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

Landscape Blocks, the primary component of Critical Natural Landscapes, are large areas of intact predominately natural vegetation, consisting of contiguous forests, wetlands, rivers, lakes, and ponds, as well as coastal habitats such as barrier beaches and salt marshes. Pastures and power-line rights-of-way, which are less intensively altered than most developed areas, were also included since they provide habitat and connectivity for many species. Collectively, these natural cover types total 3.6 million acres across the state. An Ecological Integrity assessment was used to identify the most intact and least fragmented areas. These large Landscape Blocks are most likely to maintain dynamic ecological processes such as buffering, connectivity, natural disturbance, and hydrological regimes, all of which help to support wide-ranging wildlife species and many other elements of biodiversity.

In order to identify critical Landscape Blocks in each ecoregion, different Ecological Integrity thresholds were used to select the largest intact landscape patches in each ecoregion while avoiding altered habitat as much as possible. This ecoregional representation accomplishes a key goal of *BioMap2* to protect the ecological stages that support a broad suite of biodiversity in the context of climate change. Blocks were defined by major roads, and minimum size thresholds differed among ecoregions to ensure that *BioMap2* includes the best of the best in each ecoregion.

CNL 764

A 6,123-acre Critical Natural Landscape featuring Aquatic Core Buffer, Wetland Core Buffer and Landscape Block.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river,
by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

Landscape Blocks, the primary component of Critical Natural Landscapes, are large areas of intact predominately natural vegetation, consisting of contiguous forests, wetlands, rivers, lakes, and ponds, as well as coastal habitats such as barrier beaches and salt marshes. Pastures and power-line rights-of-way, which are less intensively altered than most developed areas, were also included since they provide habitat and connectivity for many species. Collectively, these natural cover types total 3.6 million acres across the state. An Ecological Integrity assessment was used to identify the most intact and least fragmented areas. These large Landscape Blocks are most likely to maintain dynamic ecological processes such as buffering, connectivity, natural disturbance, and hydrological regimes, all of which help to support wide-ranging wildlife species and many other elements of biodiversity.

In order to identify critical Landscape Blocks in each ecoregion, different Ecological Integrity thresholds were used to select the largest intact landscape patches in each ecoregion while avoiding altered habitat as much as possible. This ecoregional representation accomplishes a key goal of BioMap2 to protect the ecological stages that support a broad suite of biodiversity in the context of climate change. Blocks were defined by major roads, and minimum size thresholds differed among ecoregions to ensure that BioMap2 includes the best of the best in each ecoregion.
Help Save Endangered Wildlife!

Please contribute on your Massachusetts income tax form or directly to the

Natural Heritage &
Endangered Species Fund

To learn more about the Natural Heritage & Endangered Species Program and the Commonwealth’s rare species, visit our web site at www.mass.gov/nhesp.