This report and associated map provide information about important sites for biodiversity conservation in your area.

This information is intended for conservation planning, and is **not** intended for use in state regulations.
Table of Contents

Introduction

What is BioMap2 – Purpose and applications

One plan, two components

Understanding Core Habitat and its components

Understanding Critical Natural Landscape and its components

Understanding Core Habitat and Critical Natural Landscape Summaries

Sources of Additional Information

Oakham Overview

Core Habitat and Critical Natural Landscape Summaries

Elements of BioMap2 Cores

Core Habitat Summaries

Elements of BioMap2 Critical Natural Landscapes

Critical Natural Landscape Summaries
Introduction
The Massachusetts Department of Fish & Game, through the Division of Fisheries and Wildlife’s Natural Heritage & Endangered Species Program (NHESP), and The Nature Conservancy’s Massachusetts Program developed BioMap2 to protect the state’s biodiversity in the context of climate change.

BioMap2 combines NHESP’s 30 years of rigorously documented rare species and natural community data with spatial data identifying wildlife species and habitats that were the focus of the Division of Fisheries and Wildlife’s 2005 State Wildlife Action Plan (SWAP). BioMap2 also integrates The Nature Conservancy’s assessment of large, well-connected, and intact ecosystems and landscapes across the Commonwealth, incorporating concepts of ecosystem resilience to address anticipated climate change impacts.

Protection and stewardship of BioMap2 Core Habitat and Critical Natural Landscape is essential to safeguard the diversity of species and their habitats, intact ecosystems, and resilient natural landscapes across Massachusetts.

What Does Status Mean?
The Division of Fisheries and Wildlife determines a status category for each rare species listed under the Massachusetts Endangered Species Act, M.G.L. c.131A, and its implementing regulations 321 CMR 10.00. Rare species are categorized as Endangered, Threatened or of Special Concern according to the following:

- Endangered species are in danger of extinction throughout all or a significant portion of their range or are in danger of extirpation from Massachusetts.
- Threatened species are likely to become Endangered in Massachusetts in the foreseeable future throughout all or a significant portion of their range.
- Special Concern species have suffered a decline that could threaten the species if allowed to continue unchecked or occur in such small numbers or with such restricted distribution or specialized habitat requirements that they could easily become Threatened in Massachusetts.

In addition NHESP maintains an unofficial watch list of plants that are tracked due to potential conservation interest or concern, but are not regulated under the Massachusetts Endangered Species Act or other laws or regulations. Likewise, described natural communities are not regulated by any law or regulations, but they can help to identify
core areas that are worthy of protection. The status of natural communities reflects the documented number and acreages of each community type in the state:

- Critically Imperiled communities typically have 5 or fewer documented sites or have very few remaining acres in the state.
- Imperiled communities typically have 6-20 sites or few remaining acres in the state.
- Vulnerable communities typically have 21-100 sites or limited acreage across the state.
- Secure communities typically have over 100 sites or abundant acreage across the state; however, excellent examples are identified as Core Habit to ensure continued protection.

In 2005 the Massachusetts Division of Fisheries and Wildlife completed a comprehensive State Wildlife Action Plan (SWAP) documenting the status of Massachusetts wildlife and providing recommendations to help guide wildlife conservation decision-making. SWAP includes all the wildlife species listed under the Massachusetts Endangered Species Act (MESA), as well as more than 80 species that need conservation attention but do not meet the requirements for inclusion under MESA. The SWAP document is organized around habitat types in need of conservation within the Commonwealth. While the original BioMap focused primarily on rare species protected under MESA, BioMap2 also addresses other Species of Conservation Concern, their habitats, and the ecosystems that support them to create a spatial representation of most of the elements of SWAP.

Core Habitat identifies key areas that are critical for the long-term persistence of rare species and other Species of Conservation Concern, as well as a wide diversity of natural communities and intact ecosystems across the Commonwealth. Protection of Core Habitats will contribute to the conservation of specific elements of biodiversity.

Critical Natural Landscape identifies large natural Landscape Blocks that are minimally impacted by development. If protected, these areas will provide habitat for wide-ranging native species, support intact ecological processes, maintain connectivity among habitats, and enhance ecological resilience to natural and anthropogenic disturbances in a rapidly changing world. Areas delineated as Critical Natural Landscape also include buffering upland around wetland, coastal, and aquatic Core Habitats to help ensure their long-term integrity.

The long-term persistence of Massachusetts biological resources requires a determined commitment to land and water conservation. Protection and stewardship of both Critical Natural Landscapes and Core Habitats are needed to realize the biodiversity conservation vision of BioMap2.

Components of Core Habitat

Core Habitat identifies specific areas necessary to promote the long-term persistence of rare species, other Species of Conservation Concern, exemplary natural communities, and intact ecosystems.

Rare Species

There are 432 native plant and animal species listed as Endangered, Threatened or Special Concern under the Massachusetts Endangered Species Act (MESA) based on their rarity, population trends, and threats to survival. For
Table 1. Species of Conservation Concern described in the State Wildlife Action Plan and/or included on the MESA List and for which habitat was mapped in BioMap2. Note that plants are not included in SWAP, and that marine species such as whales and sea turtles are not included in BioMap2.

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>MESA-listed Species</th>
<th>Non-listed Species of Conservation Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Birds</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>Reptiles</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Amphibians</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Fish</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>102</td>
<td>9</td>
</tr>
<tr>
<td>Plants</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>413</td>
<td>62</td>
</tr>
</tbody>
</table>

BioMap2, NHESP staff identified the highest quality habitat sites for each non-marine species based on size, condition, and landscape context.

Other Species of Conservation Concern

In addition to species on the MESA List described previously, the State Wildlife Action Plan (SWAP) identifies 257 wildlife species and 22 natural habitats most in need of conservation within the Commonwealth. BioMap2 includes species-specific habitat areas for 45 of these species and habitat for 17 additional species which was mapped with other coarse-filter and fine-filter approaches.

Priority Natural Communities

Natural communities are assemblages of plant and animal species that share a common environment and occur together repeatedly on the landscape. BioMap2 gives conservation priority to natural communities with limited distribution and to the best examples of more common types.

Vernal Pools

Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. BioMap2 identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.

Forest Cores

In BioMap2, Core Habitat includes the best examples of large, intact forests that are least impacted by roads and development, providing critical habitat for numerous woodland species. For example, the interior forest habitat defined by Forest Cores supports many bird species sensitive to the impacts of roads and development, such as the Black-throated Green Warbler, and helps maintain ecological processes found only in unfragmented forest patches.

Wetland Cores

BioMap2 used an assessment of Ecological Integrity to identify the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Aquatic Cores

To delineate integrated and functional ecosystems for fish species and other aquatic
Species of Conservation Concern, beyond the species and exemplary habitats described above, BioMap2 identifies intact river corridors within which important physical and ecological processes of the river or stream occur.

Components of Critical Natural Landscape

Critical Natural Landscape identifies intact landscapes in Massachusetts that are better able to support ecological processes and disturbance regimes, and a wide array of species and habitats over long time frames.

Landscape Blocks

BioMap2 identifies the most intact large areas of predominatecally natural vegetation, consisting of contiguous forests, wetlands, rivers, lakes, and ponds, as well as coastal habitats such as barrier beaches and salt marshes.

Upland Buffers of Wetland and Aquatic Cores

A variety of analyses were used to identify protective upland buffers around wetlands and rivers.

Upland Habitat to Support Coastal Adaptation

BioMap2 identifies undeveloped lands adjacent to and up to one and a half meters above existing salt marshes as Critical Natural Landscapes with high potential to support inland migration of salt marsh and other coastal habitats over the coming century.

The conservation areas identified by BioMap2 are based on breadth and depth of data, scientific expertise, and understanding of Massachusetts’ biodiversity. The numerous sources of information and analyses used to create Core Habitat and Critical Natural Landscape are complementary, and outline a comprehensive conservation vision for Massachusetts, from rare species to intact landscapes. In total, these robust analyses define a suite of priority lands and waters that, if permanently protected, will support Massachusetts’ natural systems for generations to come.

Legal Protection of Biodiversity

BioMap2 presents a powerful vision of what Massachusetts would look like with full protection of the land most important for supporting the Commonwealth’s biodiversity.

While BioMap2 is a planning tool with no regulatory function, all state-listed species enjoy legal protection under the Massachusetts Endangered Species Act (M.G.L. c.131A) and its implementing regulations (321 CMR 10.00). Wetland habitat of state-listed wildlife is also protected under the Wetlands Protection Act Regulations (310 CMR 10.00). The Natural Heritage Atlas contains maps of Priority Habitats and Estimated Habitats, which are used, respectively, for regulation under the Massachusetts Endangered Species Act and the Wetlands Protection Act. For more information on rare species regulations, and to view Priority and Estimated Habitat maps, please see the Regulatory Review page at http://www.mass.gov/eea/agencies/dfg/dfw/natural-heritage/regulatory-review/.

BioMap2 is a conservation planning tool that does not, in any way, supplant the Estimated and Priority Habitat Maps which have regulatory significance. Unless and until the BioMap2 vision is fully realized, we must continue to protect our most imperiled species and their habitats.
Understanding Core Habitat Summaries

Following the Town Overview, there is a descriptive summary of each Core Habitat and Critical Natural Landscape that occurs in your city or town. These summaries highlight some of the outstanding characteristics of each Core Habitat and Critical Natural Landscape, and will help you learn more about your city or town’s biodiversity. You can find out more information about many of these species and natural communities by looking at specific fact sheets at www.mass.gov/nhesp.

Additional Information

For copies of the full BioMap2 report, the Technical Report, and an interactive mapping tool, visit the BioMap2 website via the Land Protection and Planning tab at www.mass.gov/nhesp. If you have any questions about this report, or if you need help protecting land for biodiversity in your community, the Natural Heritage & Endangered Species Program staff looks forward to working with you.

Contact the Natural Heritage & Endangered Species Program

By phone 508-389-6360
By fax 508-389-7890
By email natural.heritage@state.ma.us
By Mail 100 Hartwell Street, Suite 230
West Boylston, MA 01583

The GIS datalayers of BioMap2 are available for download from MassGIS at www.mass.gov/mgis.
Town Overview

Oakham lies within the Lower Worcester Plateau Ecoregion, an area comprised of open hills and transition hardwood and central hardwood forests. Most parts drain to the Chicopee and Quinebaug Rivers.

Oakham at a Glance

- Total Area: 13,579 acres (21.2 square miles)
- Human Population in 2010: 1,902
- Open space protected in perpetuity: 4,138 acres, or 30.5% percent of total area*
- BioMap2 Core Habitat: 1,492 acres
- BioMap2 Core Habitat Protected: 706 acres or 47.3%
- BioMap2 Critical Natural Landscape: 1,329 acres
- BioMap2 Critical Natural Landscape Protected: 360 acres or 27.1%.

BioMap2 Components

Core Habitat
- 6 Exemplary or Priority Natural Community Cores
- 3 Aquatic Cores
- 9 Vernal Pool Cores
- 8 Species of Conservation Concern Cores**
 - 1 reptile, 1 amphibian, 1 fish, 2 insects, 4 plants

Critical Natural Landscape
- 2 Landscape Blocks
- 6 Wetland Core Buffers
- 3 Aquatic Core Buffers

* Calculated using MassGIS data layer “Protected and Recreational Open Space—March, 2012”.

** See next pages for complete list of species, natural communities and other biodiversity elements.
BioMap2 Core Habitat and Critical Natural Landscape in Oakham

![Map of Oakham showing BioMap2 Core Habitat and Critical Natural Landscape](image)

- **BioMap2 Core Habitat**
- **BioMap2 Critical Natural Landscape**

1 Mile
Species of Conservation Concern, Priority and Exemplary Natural Communities, and Other Elements of Biodiversity in Oakham

Insects

Beetles
Purple Tiger Beetle, (Cicindela purpurea), SC

Dragonflies
Stygian Shadowdragon, (Neurocordulia yamaskanensis), SC

Amphibians
Blue-spotted Salamander, (Ambystoma laterale), SC

Fishes
Bridle Shiner, (Notropis bifrenatus), SC

Reptiles
Northern Black Racer, (Coluber constrictor), Non-listed SWAP

Plants
Small Bur-reed, (Sparganium natans), E
Dwarf Mistletoe, (Arceuthobium pusillum), SC
New England Blazing Star, (Liatris scariosa var. novae-angliae), SC
Slender Cottongrass, (Eriophorum gracile), T

Priority Natural Communities
Black Gum Swamp, S2
Kettlehole Level Bog, S2
Spruce-Tamarack Bog, S2
Acidic Graminoid Fen, S3
Level Bog, S3
Spruce-Fir Swamp, S3

Other BioMap2 Components
Aquatic Core
Vernal Pool Core
Landscape Block
Aquatic Core Buffer
Wetland Core Buffer
E = Endangered
T = Threatened
SC = Special Concern
S1 = Critically Imperiled communities, typically 5 or fewer documented sites or very few remaining acres in the state.
S2 = Imperiled communities, typically 6-20 sites or few remaining acres in the state.
S3 = Vulnerable communities, typically have 21-100 sites or limited acreage across the state.
BioMap2 Core Habitat in Oakham

Core IDs correspond with the following element lists and summaries.
Elements of BioMap2 Cores

This section lists all elements of BioMap2 Cores that fall entirely or partially within Oakham. The elements listed here may not occur within the bounds of Oakham.

Core 1745
- Aquatic Core
- Wetland Core
- Vernal Pool Core
- Species of Conservation Concern
 - Bridle Shiner, *Notropis bifrenatus*, SC

Core 1755
- Vernal Pool Core

Core 1782
- Vernal Pool Core

Core 1786
- Aquatic Core
- Priority & Exemplary Natural Communities
 - Acidic Graminoid Fen, S3
- Species of Conservation Concern
 - Slender Cottongrass, *Eriophorum gracile*, T

Core 1789
- Priority & Exemplary Natural Communities
 - Black Gum Swamp, S2

Core 1794
- Vernal Pool Core
- Priority & Exemplary Natural Communities
 - Black Gum Swamp, S2

Core 1797
- Priority & Exemplary Natural Communities
 - Black Gum Swamp, S2

Core 1811
- Vernal Pool Core

Core 1824
- Vernal Pool Core

Core 1841
- Priority & Exemplary Natural Communities
 - Spruce-Fir Swamp, S3
Core 1845
Vernal Pool Core

Core 1856
Vernal Pool Core

Core 1857
Priority & Exemplary Natural Communities
- Spruce-Tamarack Bog

Species of Conservation Concern
- Dwarf Mistletoe
 Arceuthobium pusillum

Core 1858
Priority & Exemplary Natural Communities
- Level Bog

Species of Conservation Concern
- Dwarf Mistletoe
 Arceuthobium pusillum

Core 1866
Priority & Exemplary Natural Communities
- Level Bog
- Spruce-Tamarack Bog

Species of Conservation Concern
- Dwarf Mistletoe
 Arceuthobium pusillum

Core 1893
Vernal Pool Core

Core 1897
Aquatic Core

Species of Conservation Concern
- Small Bur-reed
 Sparganium natans
- Northern Black Racer
 Coluber constrictor

Non-listed SWAP

Core 1914
Priority & Exemplary Natural Communities
- Kettlehole Level Bog

Core 1952
Aquatic Core
Wetland Core

Species of Conservation Concern
- Triangle Floater
 Alasmidonta undulata
- Stygian Shadowdragon
 Neurocordulia yamaskanensis
Core 1975

Aquatic Core

Priority & Exemplary Natural Communities

Spruce-Tamarack Bog

Species of Conservation Concern

- New England Blazing Star: *Liatris scariosa var. novae-angliae* SC
- Coastal Swamp Metarranthis Moth: *Metarranthis pilosaria* SC
- Bog Elfin: *Callophrys lanaraeensis* T
- Purple Tiger Beetle: *Cicindela purpurea* SC
- Blue-spotted Salamander: *Ambystoma laterale* SC
- Four-toed Salamander: *Hemidactylium scutatum* Non-listed SWAP
- Northern Black Racer: *Coluber constrictor* Non-listed SWAP
- Bridle Shiner: *Notropis bifrenatus* SC
Core Habitat Summaries

Core 1745
A 291-acre Core Habitat featuring Wetland Core, Aquatic Core, Vernal Pool Core, and a Species of Conservation Concern.

Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.

Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. BioMap2 identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.

Bridle Shiners are small (<5 cm) minnows that are found in clear water in slack areas of streams and rivers and are also found in lakes and ponds.

Core 1755
A 56-acre Core Habitat featuring Vernal Pool Core.

Core 1782
A 56-acre Core Habitat featuring Vernal Pool Core.

Core 1786
A 15-acre Core Habitat featuring Aquatic Core, a Priority Natural Community, and a Species of Conservation Concern.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.
Acidic Graminoid Fens are sedge- and sphagnum-dominated acidic peatlands that experience some groundwater and/or surface water flow but no calcareous seepage. Standing water is often present throughout much of the growing season. This example of Acidic Graminoid Fen, though created by a human disturbance to the sites’ hydrology, is in excellent condition with a remarkable diversity of species.

Slender Cottongrass is a plant of swamps and peatlands. Habitats in Massachusetts include acidic and calcareous fens and portions of seepage swamps.

Core 1789

A <1-acre Core Habitat featuring a Priority Natural Community.

Black Gum Swamps are forested hummocky peatlands that occur in poorly-drained basins. Black gum is an abundant or dominant canopy tree with red maple, growing primarily on the hummocks, which results in a relatively open canopy. This relatively large example of Black Gum Swamp is of excellent quality, with no invasive exotics, in a good landscape setting.

Core 1794

A 210-acre Core Habitat featuring Vernal Pool Core and Priority Natural Communities.

Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. BioMap2 identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.

Black Gum Swamps are forested hummocky peatlands that occur in poorly-drained basins. Black gum is an abundant or dominant canopy tree with red maple, growing primarily on the hummocks, which results in a relatively open canopy. This relatively large example of Black Gum Swamp is of excellent quality, with no invasive exotics, in a good landscape setting.

Core 1797

A 38-acre Core Habitat featuring a Priority Natural Community.

Black Gum Swamps are forested hummocky peatlands that occur in poorly-drained basins. Black gum is an abundant or dominant canopy tree with red maple, growing primarily on the hummocks, which results in a relatively open canopy. This relatively large example of Black Gum Swamp is of excellent quality, with no invasive exotics, in a good landscape setting.

Core 1811

A 124-acre Core Habitat featuring Vernal Pool Core.

Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. BioMap2 identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.
Core 1824

A 143-acre Core Habitat featuring Vernal Pool Core.

Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. *BioMap2* identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.

Core 1841

A 34-acre Core Habitat featuring Priority Natural Communities.

Spruce-Fir Boreal Swamps are forested wetlands dominated by red spruce and balsam fir. These swamps are typically found at stream headwaters or in poorly drained basins in the higher, western and north-central parts of the state. This example of Spruce-Fir Swamp is one of the larger in the state, and is in good condition despite historical logging in the area.

Core 1845

A 104-acre Core Habitat featuring Vernal Pool Core.

Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. *BioMap2* identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.

Core 1856

A 180-acre Core Habitat featuring Vernal Pool Core.

Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. *BioMap2* identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.

Core 1857

A 1-acre Core Habitat featuring a Priority Natural Community and a Species of Conservation Concern.

Spruce-Tamarack Bog communities are acidic forested peatlands with an overstory of black spruce and tamarack and an understory of heath shrubs on sphagnum moss. They occur in kettlehole depressions, watershed divides, and along pond margins. This Spruce-Tamarack Bog is on floating sphagnum and leatherleaf islands. Although small, it is in a mosaic with a Level Bog. An old rail bed crosses the wetland.

A member of the Christmas Mistletoe family, Dwarf Mistletoe is a very small fleshy shrub, usually no more than 0.8 inch tall, that parasitizes conifer trees. In Massachusetts, Dwarf Mistletoe occurs in peatlands varying from kettlehole peat bogs to spruce-fir-birch headwater swamps, generally on the branches of black spruce (*Picea mariana*).
Core 1858
A 1-acre Core Habitat featuring Priority Natural Communities and a Species of Conservation Concern. Level Bogs are dwarf-shrub peatlands, generally with pronounced hummocks and hollows in sphagnum moss. These wetland communities are very acidic and nutrient-poor because the peat isolates them from nutrients in groundwater and streams. This Level Bog occurs as patches on the edges of Muddy Pond, mixed with other Priority and more common community types. Although a railbed splits the pond, the bog community appears stable and diverse.

A member of the Christmas Mistletoe family, Dwarf Mistletoe is a very small fleshy shrub, usually no more than 0.8 inch tall, that parasitizes conifer trees. In Massachusetts, Dwarf Mistletoe occurs in peatlands varying from kettlehole peat bogs to spruce-fir-birch headwater swamps, generally on the branches of black spruce (Picea mariana).

Core 1866
A 9-acre Core Habitat featuring Priority Natural Communities and a Species of Conservation Concern. Level Bogs are dwarf-shrub peatlands, generally with pronounced hummocks and hollows in sphagnum moss. These wetland communities are very acidic and nutrient-poor because the peat isolates them from nutrients in groundwater and streams. This Level Bog occurs as patches on the edges of Muddy Pond, mixed with other Priority and more common community types. Although a railbed splits the pond, the bog community appears stable and diverse.

Spruce-Tamarack Bog communities are acidic forested peatlands with an overstory of black spruce and tamarack and an understory of heath shrubs on sphagnum moss. They occur in kettlehole depressions, watershed divides, and along pond margins. This Spruce-Tamarack Bog is on floating sphagnum and leatherleaf islands. Although small, it is in a mosaic with a Level Bog. An old rail bed crosses the wetland.

A member of the Christmas Mistletoe family, Dwarf Mistletoe is a very small fleshy shrub, usually no more than 0.8 inch tall, that parasitizes conifer trees. In Massachusetts, Dwarf Mistletoe occurs in peatlands varying from kettlehole peat bogs to spruce-fir-birch headwater swamps, generally on the branches of black spruce (Picea mariana).

Core 1893
A 130-acre Core Habitat featuring Vernal Pool Core. Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. BioMap2 identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.

Core 1897
A 6-acre Core Habitat featuring Aquatic Core and Species of Conservation Concern. Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.
Small Bur-reed, a grass-like wetland plant, grows in shallow water along pond shores, flooded meander scars on floodplains, and in smaller pools in peatlands. It most often grows on soft, muddy substrates. The Northern Black Racer is a snake of young upland forests, shrublands such as pitch pine/scrub oak communities and rock cliffs. Although relatively common, its range appears to be constricting and its abundance has been declining.

Core 1914

A 1-acre Core Habitat featuring a Priority Natural Community. Kettlehole Level Bogs are acidic dwarf-shrub peatlands with little water input or outflow that form in circular depressions left by melting ice blocks in sandy glacial outwash. The vegetation in Kettlehole Level Bogs usually grows in rings. This small Kettlehole Level Bog is in a large sandplain with other acidic wetlands. The species composition is good despite previous disturbance and a nearby road.

Core 1952

A 251-acre Core Habitat featuring Wetland Core, Aquatic Core, and Species of Conservation Concern. Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future. The 183-acre Wetland Core is among the largest 20% of Wetland Cores statewide and in this ecoregion. Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern. Triangle Floaters are freshwater mussels commonly found in low-gradient river reaches with sand and gravel substrates and low to moderate water velocities, although they are found in a wide range of substrate and flow conditions. Stygian Shadowdragons are dragonflies that are found on lakes with rocky shores and medium to large rivers that are relatively unvegetated.

Core 1975

A 688-acre Core Habitat featuring Aquatic Core, Priority Natural Communities, and Species of Conservation Concern. Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern. Spruce-Tamarack Bog communities are acidic forested peatlands with an overstory of black spruce and tamarack and an understory of heath shrubs on sphagnum moss. They occur in kettlehole depressions,
watershed divides, and along pond margins. This occurrence of Spruce-Tamarack Bog is the largest and best quality example of this community known in the state.

New England Blazing Star is an endemic, globally rare, perennial composite of dry, sandy grasslands and clearings. In Massachusetts, New England Blazing Star inhabits open, dry, low-nutrient sandy soils of grasslands, heathlands, and barrens. It thrives in fire-influenced natural communities that are periodically disturbed and devoid of dense woody plant cover.

Coastal Swamp Metarranthis moths inhabit open, acidic wetlands with ericaceous vegetation, especially shrub swamps and bogs, often within sandplain pitch pine/scrub oak barrens. Cranberry (Vaccinium macrocarpon) is a documented larval host, leatherleaf (Chamaedaphne calyculata) is likely also used; in dry barrens habitat the most likely larval hosts are lowbush blueberries (Vaccinium pallidum and V. angustifolium).

The Bog Elfin is a very small lycaenid butterfly. It inhabits black spruce (Picea mariana) swamps and bogs. Larvae feed on the new growth at the branch tips of black spruce.

Although the Purple Tiger Beetle may be found on sandy loam soils along farm roads, grass-strip runways, or on earthern dams, in Massachusetts it primarily inhabits sandplain grasslands and heathlands, and grass or heath openings in pitch pine-scrub oak barrens.

Adult and juvenile Blue-spotted Salamanders inhabit upland forests during most of the year, where they reside in small-mammal burrows and other subsurface retreats. Adults migrate during late winter or early spring to breed in vernal pools and fish-free areas of swamps, marshes, or similar wetlands. Larvae metamorphose in late summer or early fall, whereupon they disperse into upland forest.

Four-toed Salamanders live in forested habitats surrounding swamps, bogs, marshes, vernal pools, and other fish-free waters that are used as breeding sites. Most breeding sites in Massachusetts are characterized by pit-and-mound topography with significant sphagnum-moss cover. Eggs are typically laid in mounds or patches of sphagnum moss that overhang water. Upon hatching, the larvae wriggle through the moss and drop into the water, where they will develop for several weeks prior to metamorphosis.

The Northern Black Racer is a snake of young upland forests, shrublands such as pitch pine/scrub oak communities and rock cliffs. Although relatively common, its range appears to be constricting and its abundance has been declining.

Bridle Shiners are small (<5 cm) minnows that are found in clear water in slack areas of streams and rivers and are also found in lakes and ponds.
BioMap2 Critical Natural Landscape in Oakham

Critical Natural Landscape IDs correspond with the following element lists and summaries.
Elements of BioMap2 Critical Natural Landscapes

This section lists all elements of BioMap2 Critical Natural Landscapes that fall entirely or partially within Oakham. The elements listed here may not occur within the bounds of Oakham.

CNL 890
- Aquatic Core Buffer
- Wetland Core Buffer

CNL 896
- Wetland Core Buffer

CNL 906
- Aquatic Core Buffer
- Landscape Block
- Wetland Core Buffer

CNL 912
- Wetland Core Buffer

CNL 919
- Wetland Core Buffer

CNL 928
- Aquatic Core Buffer

CNL 937
- Wetland Core Buffer

CNL 1010
- Aquatic Core Buffer
- Landscape Block
- Wetland Core Buffer
Critical Natural Landscape Summaries

CNL 890
A 26-acre Critical Natural Landscape featuring Aquatic Core Buffer and Wetland Core Buffer.
A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 896
A 129-acre Critical Natural Landscape featuring Wetland Core Buffer.
A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 906
A 1,923-acre Critical Natural Landscape featuring Aquatic Core Buffer, Wetland Core Buffer and Landscape Block.
A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

Landscape Blocks, the primary component of Critical Natural Landscapes, are large areas of intact predominately natural vegetation, consisting of contiguous forests, wetlands, rivers, lakes, and ponds, as well as coastal habitats such as barrier beaches and salt marshes. Pastures and power-line rights-of-way, which are less intensively altered than most developed areas, were also included since they provide habitat and connectivity for many species. Collectively, these natural cover types total 3.6 million acres across the state. An Ecological Integrity assessment was used to identify the most intact and least fragmented areas. These large Landscape Blocks are most likely to maintain dynamic ecological processes such as buffering, connectivity, natural disturbance, and hydrological regimes, all of which help to support wide-ranging wildlife species and many other elements of biodiversity.

In order to identify critical Landscape Blocks in each ecoregion, different Ecological Integrity thresholds were used to select the largest intact landscape patches in each ecoregion while avoiding altered habitat.
as much as possible. This ecoregional representation accomplishes a key goal of BioMap2 to protect the ecological stages that support a broad suite of biodiversity in the context of climate change. Blocks were defined by major roads, and minimum size thresholds differed among ecoregions to ensure that BioMap2 includes the best of the best in each ecoregion.

CNL 912

A 71-acre Critical Natural Landscape featuring Wetland Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 919

A 41-acre Critical Natural Landscape featuring Wetland Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 928

A 17-acre Critical Natural Landscape featuring Aquatic Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 937

A 4-acre Critical Natural Landscape featuring Wetland Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.
CNL 1010

A 7,796-acre Critical Natural Landscape featuring Aquatic Core Buffer, Wetland Core Buffer and Landscape Block.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

Landscape Blocks, the primary component of Critical Natural Landscapes, are large areas of intact predominately natural vegetation, consisting of contiguous forests, wetlands, rivers, lakes, and ponds, as well as coastal habitats such as barrier beaches and salt marshes. Pastures and power-line rights-of-way, which are less intensively altered than most developed areas, were also included since they provide habitat and connectivity for many species. Collectively, these natural cover types total 3.6 million acres across the state. An Ecological Integrity assessment was used to identify the most intact and least fragmented areas. These large Landscape Blocks are most likely to maintain dynamic ecological processes such as buffering, connectivity, natural disturbance, and hydrological regimes, all of which help to support wide-ranging wildlife species and many other elements of biodiversity.

In order to identify critical Landscape Blocks in each ecoregion, different Ecological Integrity thresholds were used to select the largest intact landscape patches in each ecoregion while avoiding altered habitat as much as possible. This ecoregional representation accomplishes a key goal of BioMap2 to protect the ecological stages that support a broad suite of biodiversity in the context of climate change. Blocks were defined by major roads, and minimum size thresholds differed among ecoregions to ensure that BioMap2 includes the best of the best in each ecoregion.

For more information on rare species and natural communities, please see our fact sheets online at www.mass.gov/nhesp.
Help Save Endangered Wildlife!

Please contribute on your Massachusetts income tax form or directly to the

Natural Heritage &
Endangered Species Fund

To learn more about the Natural Heritage & Endangered Species Program and the Commonwealth’s rare species, visit our web site at www.mass.gov/nhesp.