CONSERVING THE BIODIVERSITY OF MASSACHUSETTS IN A CHANGING WORLD

Merrimac

Produced in 2012

This report and associated map provide information about important sites for biodiversity conservation in your area.

This information is intended for conservation planning, and is not intended for use in state regulations.
Table of Contents

Introduction

What is BioMap2 – Purpose and applications

One plan, two components

Understanding Core Habitat and its components

Understanding Critical Natural Landscape and its components

Understanding Core Habitat and Critical Natural Landscape Summaries

Sources of Additional Information

Merrimac Overview

Core Habitat and Critical Natural Landscape Summaries

Elements of BioMap2 Cores

Core Habitat Summaries

Elements of BioMap2 Critical Natural Landscapes

Critical Natural Landscape Summaries
Introduction

The Massachusetts Department of Fish & Game, through the Division of Fisheries and Wildlife’s Natural Heritage & Endangered Species Program (NHESP), and The Nature Conservancy’s Massachusetts Program developed BioMap2 to protect the state’s biodiversity in the context of climate change.

BioMap2 combines NHESP’s 30 years of rigorously documented rare species and natural community data with spatial data identifying wildlife species and habitats that were the focus of the Division of Fisheries and Wildlife’s 2005 State Wildlife Action Plan (SWAP). BioMap2 also integrates The Nature Conservancy’s assessment of large, well-connected, and intact ecosystems and landscapes across the Commonwealth, incorporating concepts of ecosystem resilience to address anticipated climate change impacts.

Protection and stewardship of BioMap2 Core Habitat and Critical Natural Landscape is essential to safeguard the diversity of species and their habitats, intact ecosystems, and resilient natural landscapes across Massachusetts.

What Does Status Mean?

The Division of Fisheries and Wildlife determines a status category for each rare species listed under the Massachusetts Endangered Species Act, M.G.L. c.131A, and its implementing regulations 321 CMR 10.00. Rare species are categorized as Endangered, Threatened or of Special Concern according to the following:

- Endangered species are in danger of extinction throughout all or a significant portion of their range or are in danger of extirpation from Massachusetts.

- Threatened species are likely to become Endangered in Massachusetts in the foreseeable future throughout all or a significant portion of their range.

- Special Concern species have suffered a decline that could threaten the species if allowed to continue unchecked or occur in such small numbers or with such restricted distribution or specialized habitat requirements that they could easily become Threatened in Massachusetts.

In addition NHESP maintains an unofficial watch list of plants that are tracked due to potential conservation interest or concern, but are not regulated under the Massachusetts Endangered Species Act or other laws or regulations. Likewise, described natural communities are not regulated by any law or regulations, but they can help to identify ecologically important areas that are worthy of...
BioMap2: One Plan, Two Components

BioMap2 identifies two complementary spatial layers, Core Habitat and Critical Natural Landscape.

Core Habitat identifies key areas that are critical for the long-term persistence of rare species and other Species of Conservation Concern, as well as a wide diversity of natural communities and intact ecosystems across the Commonwealth. Protection of Core Habitats will contribute to the conservation of specific elements of biodiversity.

Critical Natural Landscape identifies large natural Landscape Blocks that are minimally impacted by development. If protected, these areas will provide habitat for wide-ranging native species, support intact ecological processes, maintain connectivity among habitats, and enhance ecological resilience to natural and anthropogenic disturbances in a rapidly changing world. Areas delineated as Critical Natural Landscape also include buffering upland around wetland, coastal, and aquatic Core Habitats to help ensure their long-term integrity.

The long-term persistence of Massachusetts biological resources requires a determined commitment to land and water conservation. Protection and stewardship of both Critical Natural Landscapes and Core Habitats are needed to realize the biodiversity conservation vision of BioMap2.

Components of Core Habitat

Core Habitat identifies specific areas necessary to promote the long-term persistence of rare species, other Species of Conservation Concern, exemplary natural communities, and intact ecosystems.

Rare Species

There are 432 native plant and animal species listed as Endangered, Threatened or Special Concern under the Massachusetts Endangered Species Act (MESA) based on their rarity, population trends, and threats to survival. For
Table 1. Species of Conservation Concern described in the State Wildlife Action Plan and/or included on the MESA List and for which habitat was mapped in BioMap2. Note that plants are not included in SWAP, and that marine species such as whales and sea turtles are not included in BioMap2.

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>MESA-listed Species</th>
<th>Non-listed Species of Conservation Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Birds</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>Reptiles</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Amphibians</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Fish</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>102</td>
<td>9</td>
</tr>
<tr>
<td>Plants</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>413</td>
<td>62</td>
</tr>
</tbody>
</table>

BioMap2, NHESP staff identified the highest quality habitat sites for each non-marine species based on size, condition, and landscape context.

Other Species of Conservation Concern

In addition to species on the MESA List described previously, the State Wildlife Action Plan (SWAP) identifies 257 wildlife species and 22 natural habitats most in need of conservation within the Commonwealth. BioMap2 includes species-specific habitat areas for 45 of these species and habitat for 17 additional species which was mapped with other coarse-filter and fine-filter approaches.

Priority Natural Communities

Natural communities are assemblages of plant and animal species that share a common environment and occur together repeatedly on the landscape. BioMap2 gives conservation priority to natural communities with limited distribution and to the best examples of more common types.

Vernal Pools

Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. BioMap2 identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.

Forest Cores

In BioMap2, Core Habitat includes the best examples of large, intact forests that are least impacted by roads and development, providing critical habitat for numerous woodland species. For example, the interior forest habitat defined by Forest Cores supports many bird species sensitive to the impacts of roads and development, such as the Black-throated Green Warbler, and helps maintain ecological processes found only in unfragmented forest patches.

Wetland Cores

BioMap2 used an assessment of Ecological Integrity to identify the least disturbed wetlands in the state within undeveloped landscapes — those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Aquatic Cores

To delineate integrated and functional ecosystems for fish species and other aquatic...
Species of Conservation Concern, beyond the species and exemplary habitats described above, BioMap2 identifies intact river corridors within which important physical and ecological processes of the river or stream occur.

Components of Critical Natural Landscape

Critical Natural Landscape identifies intact landscapes in Massachusetts that are better able to support ecological processes and disturbance regimes, and a wide array of species and habitats over long time frames.

Landscape Blocks

BioMap2 identifies the most intact large areas of predominately natural vegetation, consisting of contiguous forests, wetlands, rivers, lakes, and ponds, as well as coastal habitats such as barrier beaches and salt marshes.

Upland Buffers of Wetland and Aquatic Cores

A variety of analyses were used to identify protective upland buffers around wetlands and rivers.

Upland Habitat to Support Coastal Adaptation

BioMap2 identifies undeveloped lands adjacent to and up to one and a half meters above existing salt marshes as Critical Natural Landscapes with high potential to support inland migration of salt marsh and other coastal habitats over the coming century.

The conservation areas identified by BioMap2 are based on breadth and depth of data, scientific expertise, and understanding of Massachusetts’ biodiversity. The numerous sources of information and analyses used to create Core Habitat and Critical Natural Landscape are complementary, and outline a comprehensive conservation vision for Massachusetts, from rare species to intact landscapes. In total, these robust analyses define a suite of priority lands and waters that, if permanently protected, will support Massachusetts’ natural systems for generations to come.

Legal Protection of Biodiversity

BioMap2 presents a powerful vision of what Massachusetts would look like with full protection of the land most important for supporting the Commonwealth’s biodiversity. While BioMap2 is a planning tool with no regulatory function, all state-listed species enjoy legal protection under the Massachusetts Endangered Species Act (M.G.L. c.131A) and its implementing regulations (321 CMR 10.00). Wetland habitat of state-listed wildlife is also protected under the Wetlands Protection Act Regulations (310 CMR 10.00). The Natural Heritage Atlas contains maps of Priority Habitats and Estimated Habitats, which are used, respectively, for regulation under the Massachusetts Endangered Species Act and the Wetlands Protection Act. For more information on rare species regulations, and to view Priority and Estimated Habitat maps, please see the Regulatory Review page at http://www.mass.gov/eea/agencies/dfg/dfw/natural-heritage/regulatory-review.

BioMap2 is a conservation planning tool that does not, in any way, supplant the Estimated and Priority Habitat Maps which have regulatory significance. Unless and until the BioMap2 vision is fully realized, we must continue to protect our most imperiled species and their habitats.
Understanding Core Habitat Summaries

Following the Town Overview, there is a descriptive summary of each Core Habitat and Critical Natural Landscape that occurs in your city or town. These summaries highlight some of the outstanding characteristics of each Core Habitat and Critical Natural Landscape, and will help you learn more about your city or town’s biodiversity. You can find out more information about many of these species and natural communities by looking at specific fact sheets at www.mass.gov/nhsp.

Additional Information

For copies of the full BioMap2 report, the Technical Report, and an interactive mapping tool, visit the BioMap2 website via the Land Protection and Planning tab at www.mass.gov/nhsp. If you have any questions about this report, or if you need help protecting land for biodiversity in your community, the Natural Heritage & Endangered Species Program staff looks forward to working with you.

Contact the Natural Heritage & Endangered Species Program

By phone 508-389-6360
By fax 508-389-7890
By email natural.heritage@state.ma.us
By Mail 100 Hartwell Street, Suite 230
 West Boylston, MA 01583

The GIS datalayers of BioMap2 are available for download from MassGIS at www.mass.gov/mgis.

For more information on rare species and natural communities, please see our fact sheets online at www.mass.gov/nhsp.
Town Overview
Merrimac lies within the Southern New England Coastal Plains and Hills Ecoregion, an area comprised of plains with a few low hills. Forests are mainly central hardwoods with some transition hardwoods and some elm-ash-red maple and red and white pine. Many major rivers drain this area.

Merrimac at a Glance
- Total Area: 5,692 acres (8.9 square miles)
- Human Population in 2010: 6,338
- Open space protected in perpetuity: 985 acres, or 17.3% percent of total area*
- BioMap2 Core Habitat: 995 acres
- BioMap2 Core Habitat Protected: 187 acres or 18.8%
- BioMap2 Critical Natural Landscape: 875 acres
- BioMap2 Critical Natural Landscape Protected: 250 acres or 28.6%

BioMap2 Components
Core Habitat
- 5 Wetland Cores
- 2 Aquatic Cores
- 1 Vernal Pool Core
- 3 Species of Conservation Concern Cores**
 - 1 bird, 1 reptile, 1 amphibian, 1 fish

Critical Natural Landscape
- 4 Wetland Core Buffers
- 2 Aquatic Core Buffers

* Calculated using MassGIS data layer “Protected and Recreational Open Space—March, 2012”.
** See next pages for complete list of species, natural communities and other biodiversity elements.
BioMap2 Core Habitat and Critical Natural Landscape in Merrimac

BioMap2 Core Habitat

BioMap2 Critical Natural Landscape

1 Mile
Species of Conservation Concern, Priority and Exemplary Natural Communities, and Other Elements of Biodiversity in Merrimac

Amphibians

Blue-spotted Salamander, (*Ambystoma laterale*), SC

Fishes

Shortnose Sturgeon, (*Acipenser brevirostrum*), E

Reptiles

Blanding’s Turtle, (*Emydoidea blandingii*), T

Birds

Bald Eagle, (*Haliaeetus leucocephalus*), T

Other *BioMap2* Components

Aquatic Core
Wetland Core
Vernal Pool Core
Aquatic Core Buffer
Wetland Core Buffer

E = Endangered
T = Threatened
SC = Special Concern
S1 = Critically Imperiled communities, typically 5 or fewer documented sites or very few remaining acres in the state.
S2 = Imperiled communities, typically 6-20 sites or few remaining acres in the state.
S3 = Vulnerable communities, typically have 21-100 sites or limited acreage across the state.
BioMap2 Core Habitat in Merrimac

Core IDs correspond with the following element lists and summaries.
Elements of BioMap2 Cores

This section lists all elements of BioMap2 Cores that fall entirely or partially within Merrimac. The elements listed here may not occur within the bounds of Merrimac.

Core 3012/3017/3020/3021/3022/3023/3025
Wetland Core

Core 3013
Wetland Core
Vernal Pool Core
Species of Conservation Concern
 Blanding’s Turtle *Emydoidea blandingii* T

Core 3018A
Aquatic Core
Wetland Core
Priority & Exemplary Natural Communities
 Estuarine intertidal: freshwater tidal marsh S1
 Estuarine intertidal: salt marsh S3
 Small-river floodplain forest S2
Species of Conservation Concern
 American Waterwort *Elatine americana* E
 Eaton’s Beggar-ticks *Bidens eatonii* E
 Engelmann’s Umbrella-sedge *Cyperus engelmannii* T
 Estuary Arrowhead *Sagittaria montevidensis ssp. spongiosa* E
 Parker’s Pipewort *Eriocaulon parkeri* E
 Seabeach Dock *Rumex pallidus* T
 Vasey’s Pondweed *Potamogeton vaseyi* E
 New England Siltsnail *Floridobia winkleyi* SC
 Arrow Clubtail *Stylurus spiniceps* Non-listed SWAP
 Cobra Clubtail *Gomphus vastus* SC
 Coppery Emerald *Somatochlora georgiana* E
 Riverine Clubtail *Stylurus amnicola* E
 Umber Shadowdragon *Neurocordulia obsolata* SC
 Atlantic Sturgeon *Acipenser oxyrinchus* E
 Shortnose Sturgeon *Acipenser brevisrostrum* E
 Bald Eagle *Haliaeetus leucocephalus* T

Core 3019
Aquatic Core
Species of Conservation Concern
 Blue-spotted Salamander *Ambystoma laterale* SC
Core Habitat Summaries

Core 3012
A 38-acre Core Habitat featuring Wetland Core.
Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Core 3013
A 1,099-acre Core Habitat featuring Wetland Core, Vernal Pool Core, and a Species of Conservation Concern.
Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Vernal pools are small, seasonal wetlands that provide important wildlife habitat, especially for amphibians and invertebrate animals that use them to breed. BioMap2 identifies the top 5 percent most interconnected clusters of Potential Vernal Pools in the state.

Blanding’s Turtle is a medium sized turtle. It inhabits a mix of seasonal pools, marshes, shrub swamps, forest, and open uplands. After overwintering in the deep muds of wetlands, Blanding’s Turtles move overland to vernal pools and shrub swamps to feed and mate. Loss of only a few adults annually can cause populations to decline as they do not reproduce until late in life (14-20 yrs), and have low replacement rates due to low nest and juvenile survivorship. Roads are the primary cause of adult mortality.

Core 3017
An 11-acre Core Habitat featuring Wetland Core.
Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Core 3018A
A 6,298-acre section of a larger 35,194-acre Core Habitat featuring Wetland Core, Aquatic Core, Priority Natural Communities, and Species of Conservation Concern.
The mainstem of the Merrimack River, as it winds its way from the New Hampshire border in Tyngsborough to the tidal waters of its mouth, supports 19 rare and uncommon species. Bald Eagles have recently returned to nest along the river, while the federally Endangered Atlantic and Shortnose Sturgeons cruise the river’s waters in small numbers. In West Newbury, a Freshwater Tidal Marsh - a very uncommon type of natural community - hosts six Endangered and Threatened plants, including the globally rare Eaton’s Beegar-ticks and Parker’s Pipewort.

The Freshwater Tidal Marsh community occurs along coastal rivers, upstream of brackish tidal marsh. Here the marshes are flooded by tidal action twice a day, but with fresh water. These structurally diverse marshes are globally rare. This example of Freshwater Tidal Marsh is relatively large and in good condition. It is the largest community of this type north of Boston.

The Salt Marsh community type is a graminoid-dominated, tidally flooded coastal community with several vegetative zones. Salt Marshes form in areas subject to oceanic tides, but sheltered from wave energy. At over 16,000 acres this example of Salt Marsh is the largest in New England. It is generally in good condition and largely under conservation ownership.

Small-River Floodplain Forests are silver maple/green ash forests occurring on alluvial soils of small rivers and streams. They occur on small tributaries of the Connecticut and Nashua Rivers and along some small rivers of eastern Massachusetts. This example of Small-River Floodplain Forest, though quite small, is an unusual variant of the community dominated by Green Ash. It is in relatively good condition and is well buffered by the surrounding landscape.

Wetlands Cores are the least disturbed wetlands in the state within undeveloped landscapes — those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Aquatic Cores are intact river corridors within which important physical and ecological processes of the river or stream occur. They delineate integrated and functional ecosystems for fish species and other aquatic Species of Conservation Concern.

Core 3019

A 344-acre Core Habitat featuring Aquatic Core and a Species of Conservation Concern.

Adult and juvenile Blue-spotted Salamanders inhabit upland forests during most of the year, where they reside in small-mammal burrows and other subsurface retreats. Adults migrate during late winter or early spring to breed in vernal pools and fish-free areas of swamps, marshes, or similar wetlands. Larvae metamorphose in late summer or early fall, whereupon they disperse into upland forest.
Core 3020
A 7-acre Core Habitat featuring Wetland Core.

Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Core 3021
A 7-acre Core Habitat featuring Wetland Core.

Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Core 3022
A 3-acre Core Habitat featuring Wetland Core.

Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Core 3023
A 53-acre Core Habitat featuring Wetland Core.

Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.

Core 3025
A 27-acre Core Habitat featuring Wetland Core.

Wetland Cores are the least disturbed wetlands in the state within undeveloped landscapes—those with intact buffers and little fragmentation or other stressors associated with development. These wetlands are most likely to support critical wetland functions (i.e., natural hydrologic conditions, diverse plant and animal habitats, etc.) and are most likely to maintain these functions into the future.
BioMap2 Critical Natural Landscape in Merrimac

Critical Natural Landscape IDs correspond with the following element lists and summaries.
Elements of BioMap2 Critical Natural Landscapes

This section lists all elements of BioMap2 Critical Natural Landscapes that fall entirely or partially within Merrimac. The elements listed here may not occur within the bounds of Merrimac.

CNL 1352
Wetland Core Buffer

CNL 1355
Wetland Core Buffer

CNL 1356
Aquatic Core Buffer

CNL 1357
Wetland Core Buffer

CNL 1358
Wetland Core Buffer

CNL 1362
Aquatic Core Buffer
Coastal Adaptation Area
Landscape Block
Tern Foraging Area
Critical Natural Landscape Summaries

CNL 1352
A 73-acre Critical Natural Landscape featuring Wetland Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 1355
A 148-acre Critical Natural Landscape featuring Wetland Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 1356
A 261-acre Critical Natural Landscape featuring Aquatic Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 1357
A 161-acre Critical Natural Landscape featuring Wetland Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.
CNL 1358

A 60-acre Critical Natural Landscape featuring Wetland Core Buffer.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

CNL 1362

A 50,627-acre Critical Natural Landscape featuring Aquatic Core Buffer, Landscape Block, Coastal Adaptation Area, and Tern Foraging Area.

A variety of analyses were used to identify protective upland buffers around wetlands and rivers. One, the variable width buffers methodology, included the most intact areas around each wetland and river, by extending deeper into surrounding unfragmented habitats than into developed areas adjacent to each wetland. Other upland buffers were identified through the rare species habitat analysis. In this way, the conservation of wetland buffers will support the habitats and functionality of each wetland, and also include adjacent uplands that are important for many species that move between habitat types.

Landscape Blocks, the primary component of Critical Natural Landscapes, are large areas of intact predominately natural vegetation, consisting of contiguous forests, wetlands, rivers, lakes, and ponds, as well as coastal habitats such as barrier beaches and salt marshes. Pastures and power-line rights-of-way, which are less intensively altered than most developed areas, were also included since they provide habitat and connectivity for many species. Collectively, these natural cover types total 3.6 million acres across the state. An Ecological Integrity assessment was used to identify the most intact and least fragmented areas. These large Landscape Blocks are most likely to maintain dynamic ecological processes such as buffering, connectivity, natural disturbance, and hydrological regimes, all of which help to support wide-ranging wildlife species and many other elements of biodiversity.

In order to identify critical Landscape Blocks in each ecoregion, different Ecological Integrity thresholds were used to select the largest intact landscape patches in each ecoregion while avoiding altered habitat as much as possible. This ecoregional representation accomplishes a key goal of BioMap2 to protect the ecological stages that support a broad suite of biodiversity in the context of climate change. Blocks were defined by major roads, and minimum size thresholds differed among ecoregions to ensure that BioMap2 includes the best of the best in each ecoregion.

This 8,989-acre Landscape Block is the fourth largest of 62 Blocks in the ecoregion. Unlike Landscape Blocks in much of the state that are dominated by upland forests, this coastal Landscape Block is dominated by unique and important salt marsh, barrier beach, and estuary habitats.

The coastal habitats of Massachusetts are particularly vulnerable to potential sea-level rise in the next century, which many estimates suggest is likely to exceed one meter. Therefore, in addition to prioritizing current coastal habitats, the creators of BioMap2 examined the landward side of salt marshes to determine where these habitats might move to as sea levels rise. Undeveloped lands adjacent to and up to one and a half meters above existing salt marshes were identified, and included as Critical Natural Landscapes with
high potential to support inland migration of salt marsh and other coastal habitats over the coming century.

Terns range widely from their breeding colonies to forage. While the breeding and staging areas for Roseate, Arctic, Common, and Least Terns were included in the Species of Conservation Concern Core Habitat for BioMap2, tern foraging areas were included in BioMap2 as part of Critical Natural Landscape. The extent of foraging habitat for Arctic, Common, and Roseate Terns depends on the size of the breeding colony. For Least Tern, all shallow marine and estuarine waters within 2 miles of recent colony sites and up to 1 mile offshore were mapped as foraging habitat.
Help Save Endangered Wildlife!

Please contribute on your Massachusetts income tax form or directly to the

Natural Heritage & Endangered Species Fund

To learn more about the Natural Heritage & Endangered Species Program and the Commonwealth’s rare species, visit our web site at www.mass.gov/nhesp.